PhD Qualifier: Dynamics Spring 2023

The duration of this exam is 3 hours. There are 5 questions and the students must work 4 of them. If more than 4 questions are attempted, the student must specify which 4 are be graded. If not specified, the first 4 questions will be graded. Each question is 25 points and you need 70 points to pass this exam. Good Luck!

1	2	3	4	5

Problem 1. For the slider-crank mechanism of Figure 1 at the instant shown the crank is horizontal and rotating at an angular speed ω of 600 rad·s⁻¹ in the direction shown. Give the parameters $L_1 = 0.08$ m, $L_2 = 0.2$ m, and h = 0.04 m

Fig. 1: Slider-crank mechanism

- a) Determine the instantaneous center of zero velocity for the link AB.
- b) Determine the angular speed of the connecting rod and the velocity of the piston.

Problem 2. A car is towing a caravan weighing 800 kg and is accelerating at 2 $\text{m} \cdot \text{s}^{-2}$ to the right, see Figure 2. For the parameters $L_1 = 0.5$ m, $L_2 = 3$ m, and $h_1 = 1.4$ m, and $h_2 = 1$ m;

Fig. 2: Car towing a caravan along a horizontal road

- a) Draw the free body diagram for the caravan.
- **b**) Determine force applied to the hitch.

Hint: This problem is probably best solved by considering moments about the center of gravity of the caravan.

Problem 3. A ball with mass μ is attached to one end of a massless cord with length λ . You hold the other end of the cord over your head and swing the ball around yourself as shown:

Fig. 3: Figure for Problem 3

You live in a universe devoid of friction, so once you get the ball going, you're able to hold your end of the cord at a fixed location while the ball continues to describe a circular arc around you, moving with constant speed and maintaining a constant angle α with respect to the horizontal plane containing your hand.

- a) In terms of μ , λ , α , and/or the gravitational constant g, what's the tension in the cord? How much time does it take for the ball to complete each orbit around you?
- **b**) To verify the plausibility of your second answer, compute the approximate numerical value of the orbital period say, to the nearest second for the case in which m = 1 kilogram, $\lambda = 4$ meters, $\alpha = \pi/12$ radians (as shown in the figure), and g = 10 meters per square second.

Problem 4. A block with mass m is joined to a block with mass M by a linear spring with stiffness k. The system is floating at rest in space, with the spring relaxed, when suddenly — at time t = 0 — a force with magnitude $F\delta(t)$, where F is a constant and $\delta(t)$ is the unit impulse function, is applied to the block with mass M along the axis of the spring, as shown:

Fig. 4: Figure for Problem 4

- a) The distance between the blocks will oscillate thereafter. In terms of M, m, and/or k, what's the frequency of oscillation? You can assume that the blocks move only along the axis of the spring.
- b) For a given k and a given total mass M + m, is this frequency of oscillation maximized, minimized, or neither when m = M?
- c) Now suppose that some linear damping is introduced that impedes the translation of the block with mass M, and that the external force has magnitude $F \sin \Omega t$ for some constant frequency Ω . In terms of Ω , M, and/or m, what value of k will minimize the steady-state oscillation of the block with mass M?

Problem 5. Circle the best answer. Each Sub-question is worth 5 points.

5.1. Which second-order system has a natural frequency of 2 rad/s and a damping ratio of 0.5?

[A]
$$2\ddot{x} + \dot{x} + 0.5x = 0$$

[B] $4\ddot{x} + 4\dot{x} + x = 0$
[C] $\ddot{x} + 2\dot{x} + 4x = 0$
[D] $\ddot{x} + 0.5\dot{x} + 2x = 0$

5.2. A mass-spring-damper system has a spring of stiffness 1,000 N/m, a mass of 10 kg, and a damping coefficient of 10 N/(m/s). What is the natural frequency of the system?

[A]
$$10/\sqrt{2}$$
 rad/s
[B] $10\sqrt{0.75}$ rad/s
[C] 10 rad/s
[D] 100 rad/s

5.3. What is the equation of motion for the following system with $k_1 = k_2 = b_1 = b_2 = 1$?

Fig. 5: Figure of Problem 5.4

$$\begin{array}{ll} [A] & \ddot{x}+2\dot{x}+2x=0 \\ [B] & \ddot{x}+0.5\dot{x}+2x=0 \\ [C] & \ddot{x}+2\dot{x}+0.5x=0 \\ [D] & \dot{x}+0.5x=0 \end{array}$$

5.4 Suppose the system shown below starts from rest and is driven by a sinusoidal force input u(t). How long does it take (approximately) for the transients to decay and the system response x(t) to reach a steady-state sinusoidal output?

Fig. 6: Figure of Problem 5.5

 $\begin{array}{ll} [A] & \approx 0.5 sec. \\ [B] & \approx 1 sec. \\ [C] & \approx 2 sec. \\ [D] & \approx 4 sec. \\ [E] & \approx 16 sec. \end{array}$

5.5. Consider the responses below of a homogeneous second-order system from the initial condition x(0) = 4 and $\dot{x}(0) = 0$.

Which of the above cases corresponds to the response of a second-order system with a damping ratio of 3 and natural frequency of 2 rad/s?

[A]Case1 [B]Case2 [C]Case3 [D]Case4