MEGR Technical Electives

Fall 2022 Offerings

Course No.	Course Name Note: Students that do not complete the required prerequisites prior to the fall semester need to	Prerequisites
Course i to	drop the follow-on course(s) (or they may be dropped from courses without notice)	Trerequisites
MEGR 3090-001	Flight Dynamics	MEGR 3114 and
Suresh Babu	This course covers the principles of steady, quasi-steady, and dynamic flight, including the forces and	MEGR 3122, with a
CKN: 11636	moments acting on flight vehicles, along with their underlying aerodynamics.	grade of C or better
MEGR 3225-001	Finite Element Analysis (approved Motorsports, Biomedical and Energy technical elective)	MEGR 2144 and
(Fang)	The basic concepts of FEA are introduced. Pertinent concepts from linear algebra are reviewed. Simple	MEGR 2240, with a
CRN: 10608	elements such as truss and beam elements are emphasized, with an introduction to continuum elements.	grade of C or better
	introduced.	
MEGR 3231	Advanced CAD/CAM (approved Motorsports technical elective)	ENGR 1202 and
(Raquet)	An introduction to advanced CAD features and tools, CAM interface operations, design data management	MEGR 2156 both with
CRN: 11193 CRN: 12636	and reverse engineering; also application of the appropriate feature types to simplify the design process and	a C or better
MEGR 3233-001	Intro to Biomaterials (approved Biomedical technical elective)	MEGR 3161 with a
(El-Ghannam)	The course will focus on classes of materials used for biomedical applications (i.e., metals, ceramics,	grade of C or better
CRN: 11248	polymers, and composites); including exposure to the multidisciplinary nature of biomaterials with aspects	0
	of materials science and life sciences; also design criteria relevant to biomedical implants.	
MEGR 3238-001	Microscopy for Engineering (approved Biomedical technical elective)	MEGR 3161 with a
(Zhang) CPN: 15990	I heory and practical experience in microscopic techniques including optical microscopy and SEM;	grade of C or above
CKN: 13990	analysis of compositions, crystal structure determination, and sample preparation.	
MEGR 3241-001	Advanced Instrumentation for Motorsports (approved Motorsports technical elective)	MEGR 3171 with a
(McAlpine)	A discussion of motorsports related data acquisition, implementation, sensors, analysis techniques and	grade of C or better
CRN: 13187	challenges thereof. Students will get hands on experience with current motorsports acquisition software,	
MEGR 3261-001	Sustainable Energy (attraned Energy technical elective)	MEGR 3112 as a tree-
(TBA)	A treatment of global energy challenges, current energy usage, energy carriers, environmental impacts,	or co-reauisite
CRN: 14774	future energy usage, transitions in energy usage and societal changes, and energy conversion technologies.	1
MEGR 3282-001	Statistical Process Control and Metrology (approved Motorsports and Energy technical elective)	MEGR 2180 with a
(Beaman)	Introduction to metrology. Measurement of size, form and surface texture. Introduction to quality	grade of C or better
CRN: 12916	control, control charts for attributes and variables, acceptance sampling. Process capability estimation and	
MEGR 3283-001	Metrology and Precision Engineering	MEGR 2180 with a
(TBA)	Principles of precision design and their use in manufacturing and measurement; review of metrology and	grade of C or above
CRN:15991	uncertainty, a case study of precision machine design, mechanical and optical methods of surface texture	
	measurement, measurement of machine tool errors, coordinate metrology and its applications, and the role	
MECR 3452.090	or vibration analysis in machine design.	MFGR 3112 3114 3116
(Lambert)	An introduction to nuclear engineering and nuclear power generation. Topics include atomic and nuclear	all with a grade of C or
CRN: 11249	theory, radioactivity, radiation and matter, reactor theory, PWR and BWR, radiation protection, and non-	better
	power applications.	
MEGR 4090-001	Materials Science in Battery Technology (approved Motorsports and Energy technical elective)	MEGR 3161 with a grade
(TBA)	This course will present the cutting-edge advances in the materials used in batteries, such as Li-ion batteries	of C or better
UKIN: 164/9	and Li metai batteries. Discussions will include component materials (electrodes, electrolytes, separator) and full devices.	

MEGR 4090-002	Electric Vehicle Battery Modeling and Estimation (approved Motorsports and Energy technical	MEGR 3112, MEGR
CRN: 17172	elective)	3122, MEGR 3171 all
	Automotive drive cycle analysis and range estimation for conventional vehicles, hybrid vehicles and electric	with a grade of C or better
	vehicles. Fuel efficiency, carbon emissions, and power requirements of all three types of vehicles will be	
	discussed. Electrochemical modeling of battery charge/discharge cycles and degradation aging using	
	Kalman Filter and other state estimation techniques.	
MEGR 4143-001	Discrete Mechanical Vibrating Systems	MEGR 3122 with a
(Smith)	Free and forced vibrations of lumped parameter systems with multi-degrees of freedom. Topics include	grade of C or better
CRN: 14775	transient and steady state response, determination of natural frequencies and mode shapes with and	
	without damping.	
MEGR 4210-090	Automotive Power Plants (approved Motorsports and Energy technical elective)	MEGR 3112 with a
(TBA)	Energy analysis of internal and external combustion engines for vehicular propulsion. Thermodynamic	grade of C or better
CRN: 16123	principles for combustion efficient use of fuel combustion, different types of fuel uses, and pollutant	
	control.	
MEGR 4211-001	Road Vehicle Dynamics (approved Motorsports technical elective)	MEGR 3122 with a
(TBA)	An introduction to road vehicle Dynamics; acceleration and braking, road loads, steady-state cornering,	grade of C or better
CRN: 16124	suspension, steering system and tire behavior.	
MEGR 4237-001	Introduction to Control Systems (approved Energy and Motorsports technical elective)	MEGR 3122 with a
(Ghasemi)	This course will address both the theoretical and practical foundations for the design of automatic control	grade of C or better
CRN: 16125	systems. The course will cover control-oriented modeling, idealized time-domain control design and real-	
	world frequency-domain design techniques that can be used to address practical issues of environmental	
	disturbances, model uncertainty, sensor imperfections, communication delays, and actuator dynamics.	
MEGR 4271-001	Orthopedic Biomechanics (approved Biomedical technical elective)	MEGR 2144 with a
(Zheng)	This course will introduce mechanical properties of human body's hard tissues and soft tissues. This course	grade of C or better
CRN: 16126	will focus on mechanical and biological considerations for treatment of orthopedic diseases and sports	
	injuries, such as fracture, ACL injury, and osteoarthritis. Students will learn how to solve medical problems	
	using their engineering knowledge, such as finite element analysis and inverse dynamics.	
MEGR 4273-001	Regenerative Neural Engineering (approved Biomedical technical elective)	MEGR 2156, MEGR
(Yang)	This course covers the basic principles of neuroscience and biomedical engineering, and the use of these	2180, or MEGR 2279
CRN: 16127	principles in Regenerative Neural Engineering – advanced 3D bio-printing, stem cells, conductive	with a C or better
	materials, nanomaterials, and brain interfaces that relate to clinical issues and neurology.	

Approved non-MEGR Technical Electives

PHYS 3220-001 CRN: 10099	Mathematical Methods in Physics Topics include: distribution functions, solutions to ordinary and partial differential equations, boundary value problems, Fourier analysis, vectors and matrices, vector calculus, and complex variables.	PHYS 2102 and MATH 2241 with a grade of C or better, plus MEGR 3121 as a pre- or co-requisite
PHYS 4232-001 CRN: 10121	Electromagnetic Theory II Continuation of PHYS 4231. Topics covered include magnetostatics, electrodynamics, electromagnetic waves, potentials and fields. Three lecture hours each week.	PHYS 4231 with a grade of C or better
MATH 3171 CRN: 10823 CRN: 12047	Applied Math (Approved ME Technical Elective but NOT for Motorsports, Biomedical or Energy concentrations; does NOT simultaneously count as a math elective) Separation of variables techniques for the classical partial differential equations of mathematical physics; Fourier series; Sturm-Liouville theory.	MATH 2241 and 2171, with a grade of C or better

Important Notes:

Students must take at least three of the four required technical electives from MEGR-designated courses.

Students who wish to take a technical elective course outside of those listed above must receive approval from the Director of Undergraduate Programs **before** registering for such courses. Students will not receive credit otherwise.

Students pursuing concentrations must complete technical electives that are approved for their concentration.

Students are responsible for meeting all required prerequisites for elective courses.