Effect of Aquaporin Translocation on Cryopreservation of Hepatocytes

Tyler McClung¹, Mark G. Clemens², and Charles Y. Lee¹

¹ Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte

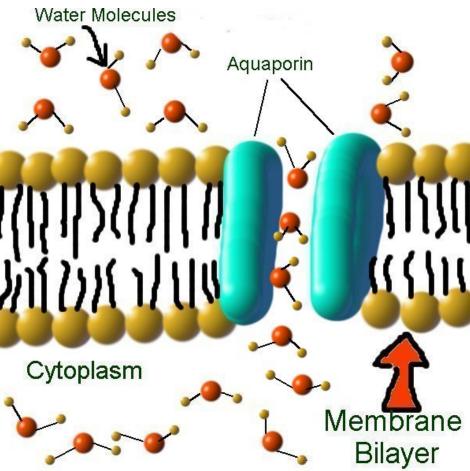
² Department of Biology, University of North Carolina at Charlotte

BACKGROUND

- Healthy livers are used for transplantation
- Remaining livers are used for research purposes and drug toxicity testing within pharmaceutical companies using isolated hepatocytes.
 - Hepatocytes: liver cells that potentially imitate the function of a complete liver

BACKGROUND

- Benefits of Cryopreservation
 - Increased availability, flexibility, and widespread use
 - Ability to be stored for extended periods of time
- Present Challenges of Cryopreservation
 - High incidence of cell death due to formation of intracellular ice



BACKGROUND

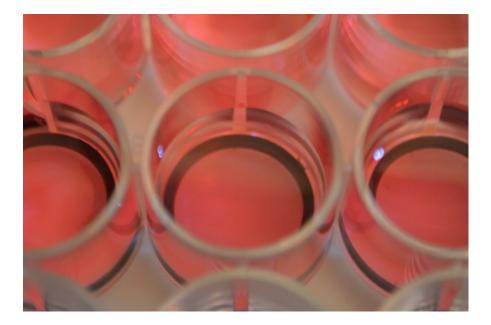
Aquaporins

The WILLIAM STATES LEE COLLEGE of ENGINEERING

- Definition: water transport channels located on the cell membrane
- Additional are stored within vesicles in the cytoplasm
- Stored aquaporins can be translocated to the cell membrane to increase water transport out of the cell, resulting in less intracellular ice formation

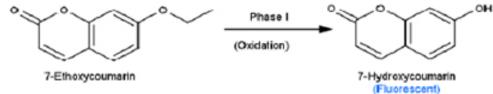
RESEARCH GOAL

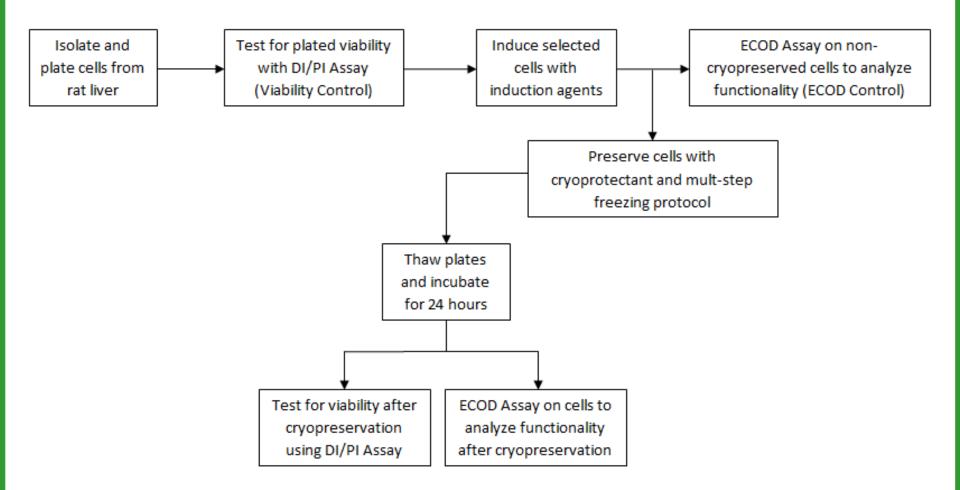
To improve cryopreservation of hepatocytes by the translocation of aquaporins


Methodology

- Induction Agents:
 - DiButyryl Cyclic-AMP (DBcAMP)
 - Choleretic stimulus, which translocates the aquaporins
 - 3-isobutyl-1-methylxanthine (IBMX)
 - Protects DBcAMP from degradation after entering the cell
 - 100µM concentration
- Cryoprotectant:
 - 20% Glycerol
 - 80% 1x Dulbecco's Modified Eagle Medium (DMEM)

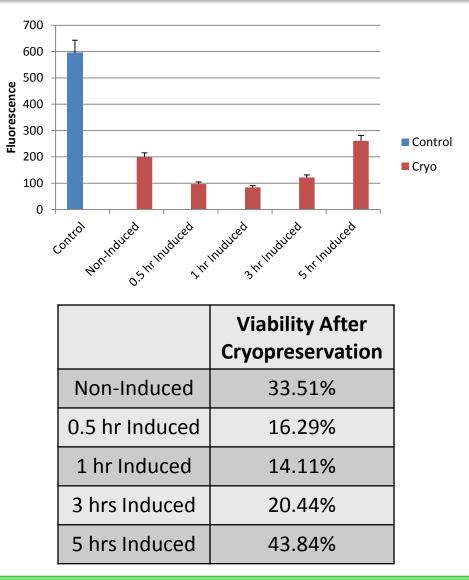
METHODOLOGY


- Digitonin and Propidium Iodide (DI/PI) Assay
 - Assesses plated viability
 - Mixture with optimal concentration of 1x/10x
 - Amount of fluorescence corresponds to number of live cells


METHODOLOGY

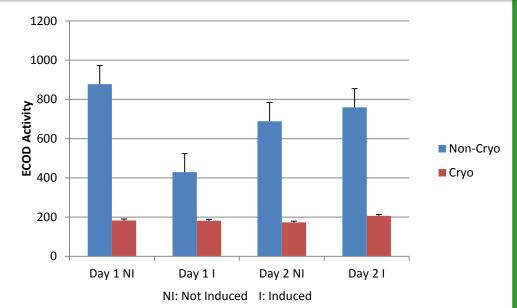
- 7-ethoxycoumarin O-dealkylas (ECOD) Assay
 - Assesses functionality
 - Treated with 1, 2, 3, 4 Tetrachlorodibenzo-p-dioxin
 (TCDD) for 24 hours
 - 7-EC applied for an incubation period of 1 hour
 - Supernatant analyzed for fluorescence
 - Positive correlation between fluorescence and ECOD Activity

METHODOLOGY



RESULTS

• Viability


 Inducing for 5 hours before cryopreservation increases viability by about 10% than if noninduced

RESULTS

- Functionality
 - Day 1: Cells were treated with TCDD 24 hours after being plated or thawed
 - Day 2: Cells were treated with TCDD 48 hours after being plated or thawed

	Percentage Functionality Regained After Cryopreservation
Day 1: NI	20.85%
Day 1: I	42.24%
Day 2: NI	25.06%
Day 2: I	27.13%

CONCLUSION

 Inducing the hepatocytes with DBcAMP and IBMX does improve viability and functionality after cryopreservation

• More induction time for the aquaporins to translocate to the membrane

• Additional time to recover from preservation

FUTURE RESEARCH

 Refine DI/PI tests to discover more accurate correlation between fluorescence and live or dead plated cells

• Further analyze ECOD results by performing chloroform extractions

 Apply methods and knowledge to cell suspensions to increase availability

