1. A mass m is subjected to a force F(t, v) where t is the time and v(t) is the velocity of the mass. It also experiences a resistive force $\eta v(t)$ where η is a constant. The motion of the mass is governed by the differential equation

$$m\frac{dv}{dt} = F - \eta v.$$

Assuming that $F(t) = \alpha e^{-\beta t} v^3$, obtain a solution for v(t). Assume that the initial velocity is v_0 .

Plot the direction fields and four solution curves for each of the following three sets of data:

- (a) $m = 10, \eta = 0, \alpha = 0.1, \beta = 0.1,$
- (b) $m = 10, \eta = 0.5, \alpha = 0.1, \beta = 0.1,$
- (c) $m = 10, \eta = 5.0, \alpha = 0.1, \beta = 0.1.$

For the solution curves, take $v_0 = 0.5, 1, 2.0$ and 2.5.

Interpret the solutions: What will the solution tend to as $t \to \infty$ in the presence and absence of the resistive force? Will the force be resistive if $\eta < 0$? Is there any resistance to motion if $\eta = 0$?

2. Obtain the general solution y(x) for the homogeneous differential equation

$$(5x^2 - 2y^2)dx - xydy = 0.$$

3. The differential equation

$$\frac{dT}{dt} = k(T^4 - T_\infty^4)$$

governs the temperature of a lumped mass cooling or heating due to radiation.

- (a) Solve the above equation for T(t) assuming that $T(0) = T_0$.
- (b) Show that the differential equation takes the same form as the differential equation for lumped heat transfer by convection (discussed in the class) when $|T T_{\infty}|$ is small compared to T_{∞} .