1. A mass m is subjected to a force $F(t, v)$ where t is the time and $v(t)$ is the velocity of the mass. It also experiences a resistive force $\eta v(t)$ where η is a constant. The motion of the mass is governed by the differential equation

$$
m \frac{d v}{d t}=F-\eta v .
$$

Assuming that $F(t)=\alpha e^{-\beta t} v^{3}$, obtain a solution for $v(t)$. Assume that the initial velocity is v_{0}.
Plot the direction fields and four solution curves for each of the following three sets of data:
(a) $m=10, \eta=0, \alpha=0.1, \beta=0.1$,
(b) $m=10, \eta=0.5, \alpha=0.1, \beta=0.1$,
(c) $m=10, \eta=5.0, \alpha=0.1, \beta=0.1$.

For the solution curves, take $v_{0}=0.5,1,2.0$ and 2.5.
Interpret the solutions: What will the solution tend to as $t \rightarrow \infty$ in the presence and absence of the resistive force? Will the force be resistive if $\eta<0$? Is there any resistance to motion if $\eta=0$?
2. Obtain the general solution $y(x)$ for the homogeneous differential equation

$$
\left(5 x^{2}-2 y^{2}\right) d x-x y d y=0
$$

3. The differential equation

$$
\frac{d T}{d t}=k\left(T^{4}-T_{\infty}^{4}\right)
$$

governs the temperature of a lumped mass cooling or heating due to radiation.
(a) Solve the above equation for $T(t)$ assuming that $T(0)=T_{0}$.
(b) Show that the differential equation takes the same form as the differential equation for lumped heat transfer by convection (discussed in the class) when $\left|T-T_{\infty}\right|$ is small compared to T_{∞}.

