- 1. Find the intervals on which the following differential equations are normal:
 - (a) $y'' + 7xy' 11y = \ln \sin \pi x$,
 - (b) $\sqrt{x(1-x)}y''' e^{-x}\sin xy' + y = 2 x,$
 - (c) $x^2 y''' 3xy'' + 4y = \sinh x$.
- 2. Consider the differential equation

$$y'' + 4y = 4$$
 on $(-\infty, \infty)$

with y(0) = 2 and y'(0) = 0. Given that both $1 + \cos 2x$ and $2\cos^2 x$ satisfy this differential equations and the initial conditions, what argument would you use to conclude that the solutions are equal, i.e.,

$$1 + \cos 2x = 2\cos^2 x.$$

- 3. Determine if the following set of functions are linearly dependent or independent. If they are linearly dependent, provide a relationship that shows the dependence.
 - (a) $\{e^x, x, \cosh x\}$ on $(-\infty, \infty)$,
 - (b) $\{e^x, e^{2x}\}$ on $(-\infty, \infty)$,
 - (c) $\{x^2 1, x^2 + x + 1, x^2 + 3x + 5\}$ on $(-\infty, \infty)$.
- 4. During the lecture, we remarked on the superposition principle for the particular solutions of non-homogeneous linear ordinary differential equations. Use this principle to obtain a particular solution to

$$y'' - 6y' + 5y = -10x^2 - 6x + 32 + e^{2x}$$

given that $3e^{2x}$ and $x^2 + 3x$ are respectively particular solutions of

$$y'' - 6y' + 5y = -9e^{2x}$$
 and $y'' - 6y' + 5y = 5x^2 + 3x - 16$.