1. Find the intervals on which the following differential equations are normal:
(a) $y^{\prime \prime}+7 x y^{\prime}-11 y=\ln \sin \pi x$,
(b) $\sqrt{x(1-x)} y^{\prime \prime \prime}-e^{-x} \sin x y^{\prime}+y=2-x$,
(c) $x^{2} y^{\prime \prime \prime}-3 x y^{\prime \prime}+4 y=\sinh x$.
2. Consider the differential equation

$$
y^{\prime \prime}+4 y=4 \text { on }(-\infty, \infty)
$$

with $y(0)=2$ and $y^{\prime}(0)=0$. Given that both $1+\cos 2 x$ and $2 \cos ^{2} x$ satisfy this differential equations and the initial conditions, what argument would you use to conclude that the solutions are equal, i.e.,

$$
1+\cos 2 x=2 \cos ^{2} x
$$

3. Determine if the following set of functions are linearly dependent or independent. If they are linearly dependent, provide a relationship that shows the dependence.
(a) $\left\{e^{x}, x, \cosh x\right\}$ on $(-\infty, \infty)$,
(b) $\left\{e^{x}, e^{2 x}\right\}$ on $(-\infty, \infty)$,
(c) $\left\{x^{2}-1, x^{2}+x+1, x^{2}+3 x+5\right\}$ on $(-\infty, \infty)$.
4. During the lecture, we remarked on the superposition principle for the particular solutions of non-homogeneous linear ordinary differential equations. Use this principle to obtain a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}+5 y=-10 x^{2}-6 x+32+e^{2 x}
$$

given that $3 e^{2 x}$ and $x^{2}+3 x$ are respectively particular solutions of

$$
y^{\prime \prime}-6 y^{\prime}+5 y=-9 e^{2 x} \text { and } y^{\prime \prime}-6 y^{\prime}+5 y=5 x^{2}+3 x-16
$$

