Controls Qualifying Exam Sample

Instructions: Complete the following five problems worth 20 points each. No material other than a calculator and pen/pencil can be used in the exam. A passing grade is approximately 70 points. If you do not understand something, make reasonable assumptions and state them clearly. This will be considered in the grading.

Laplace Transform Tables:

	f(t)	F(s)
1	Unit impulse $\delta(t)$	1
2	Unit step 1(t)	$\frac{1}{s}$
3	t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\ldots)$	$\frac{1}{s^n}$
5	t^n (<i>n</i> = 1, 2, 3,)	$\frac{n!}{s^{n+1}}$
6	e^{-at}	$\frac{1}{s+a}$
7	te^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$
9	$t^n e^{-at}$ (<i>n</i> = 1, 2, 3,)	$\frac{n!}{(s+a)^{n+1}}$
10	sin <i>wt</i>	$\frac{\omega}{s^2 + \omega^2}$
11	cos wt	$\frac{s}{s^2 + \omega^2}$
12	sinh ωt	$\frac{\omega}{s^2-\omega^2}$
13	cosh ωt	$\frac{s}{s^2 - \omega^2}$
14	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab} \left[1 + \frac{1}{a-b} (be^{-at} - ae^{-bt}) \right]$	$\frac{1}{s(s+a)(s+b)}$
	f(t)	F(s)
18	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
19	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
20	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
21	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

Problem 1: Figure 1 shows the block diagram for a control system whose objective is to make an output signal, y, track a human operator's joystick command, denoted by y_{des} . In order to filter out high frequency noise and vibrations from the human operator, the human input (y_{des}) is passed through a first order filter (known as a "precompensator") before being compared with y and sent to the main PI controller. The control signal (output of the main PI controller) is denoted by u, and the plant is represented by a second order transfer function as shown. Both the precompensator filter computations and PI controller computations are performed on a Renesas microcontroller.

- a) Identify all of the components (blocks) in Figure 1 that represent computations that occur on the microcontroller (simply draw a dashed line around the set of these blocks).
- b) How many sensors are required to implement the proposed control system? Which particular signals do these sensors need to measure?
- c) In practice, control systems that are designed in the Laplace domain must ultimately be *realized* in the time domain. Derive a time domain *integral* realization for each of the blocks that you identified in part (a). You may submit your answer in one of two ways:
 - *Option 1:* Construct block diagram representations of each of the blocks you identified in (a), where the only elements in the block diagrams are gains, integrators, and summation junctions. *Your block diagram should not include derivatives!*
 - Option 2: Write closed-form, time domain expressions for u(t) and $y_{des,f}(t)$. Your closed-form expressions can include integrals but should not include derivatives!

Figure 1: Control system (including plant) for problem 1.

Problem 2: Consider the feedback control system of Figure 2, where the forward path consists of a scalar gain, static nonlinearity, and *linear* mystery plant. The Bode plot of the mystery plant is shown in Figure 3, whereas the static nonlinearity is shown graphically in Figure 4.

What is the largest value of *K* for which the linearized closed-loop is stable for all linearization points where $-3 < y_0 < 3$ (y_0 represents the value of *y* around which the linearization is performed)? An approximate answer, based on your reading of the graphs, will be fine.

Figure 2: Block diagram for problem 2.

Figure 3: Bode plot for problem 2.

Figure 4: Static nonlinearity for problem 2.

Problem 3: Figure 5 shows a block diagram for a feedback control system, where a DC motor is used to control the position of a robot through an applied voltage, V. The motor is approximated with a first order transfer function in Figure 1. The control objective is to get the output position, y, to track the setpoint, y_{des} . v represents the velocity of the robot. The controller is a filtered proportional plus derivative controller, also known as a *lead filter*.

Figure 5: Block diagram for Problem 3.

- (a) Derive the transfer function from y_{des} to y (i.e., derive $\frac{Y(s)}{Y_{des}(s)}$) in terms of the symbols in the block diagram. For full credit, your final transfer function should be the ratio of a numerator polynomial to a denominator polynomial. If your transfer function includes more than one fraction bar, expect to lose a lot of points.
- (b) Suppose that we choose τ_c , K_p , and K_d all to be positive (K_m and τ_m will be positive by their nature, as they are the motor gain and time constant, respectively). Furthermore, suppose that we choose the control gains such that $\frac{K_d}{K_n} = \tau_m$. Under

the aforementioned assumptions, *prove* that the closed-loop system is input-output stable from y_{des} to y. *Hint: Under the stated assumption, the numerator of the controller can be factored as* $K_p(\tau_m + 1)$.

(c) Suppose that that $y_{des}(t)$ is a unit step input (u(t)). Under the same assumptions as part (b), calculate the steady-state value of e(t). If it makes you feel better, you may assume all initial conditions are equal to zero – however, they will have no impact on the final value of e(t). Note: You do not need to have successfully completed part (b) to complete part (c).

Problem 4: Consider the following open loop transfer functions as defined in the block diagram of Figure 6.

a.
$$\frac{K}{s(s\tau_1+1)(s\tau_2+1)}$$

b.
$$\frac{K(s\tau_0+1)}{s^2(s\tau_1+1)}, \tau_0 > \tau_1$$

c.
$$\frac{K}{s^2(s\tau_1+1)}$$

For each case, determine whether the system will be inherently stable, conditionally stable, or inherently unstable under closed loop control.

Figure 6: Open loop transfer function definition.

Problem 5: Consider the block diagram representation of a process controller shown in Figure 7 below.

Figure 7: Block diagram of a process with three sensor feedback.

Figure 8: Equivalent block diagram to that shown in Figure 7.

Show that the block diagram in Figure 7 can be reduced to the following equivalent model shown in Figure 8 and determine the system transfer function $G_{sys}(s)$.