van der Waals Epitaxy of Onedimensional II-VI Nanostructures Alex Owen on behalf of Ezekiel Ogle Advisor: Haitao Zhang ### **Outline** - Introduction - Experimental Setup and Procedures - Results and Discussions - Summary and Future Work - Acknowledgements ### Introduction #### Objectives - Achieve high quality and uniform growth - Employ CVD for heterogeneous growth - Compare: - van der Waals epitaxy - Conventional epitaxy ### Introduction — What are II-VI Materials? #### **II-VI Semiconductors:** | 1
1 | Periodic Table | | | | | | | | | | | | | | | | 0 | |-----------------|-----------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------------|-----------------| | H
3
Li | IIA
4
Be | of the Elements | | | | | | | | | | | | 7
N | 8
0 | VIIA
9
F | He
10
Ne | | 11
Na | 11
Mg | IIIB | IVB | VB | VIB | VIIB | | - VII - | | IB | IIB | 13
Al | 14
Si | 15
P | 16
S | 17
CI | 18
Ar | | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
 | 54
Xe | | 55
Cs | 56
Ba | 57
* La | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
TI | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 87
Fr | 88
Ra | 89
+Ac | 104
Rf | 105
Ha | 106
Sg | 107
Ns | 108
Hs | 109
Mt | 110
110 | 111
111 | 112
112 | 113
113 | | | | | | #### Applications of II-VI Nanostructures #### **II-VI Nanostructures applications** - Photovoltaic conversion - Light emission - Photo detection - High-energy radiation detection #### Epitaxial Growth: van der Waals vs. Conventional #### **Conventional Epitaxy** #### van der Waals Epitaxy ### **Results and Discussion** - ZnTe on Mica **Pressure** ~50 Torr **Temperature** 800 °C **Time** 30 min H_2 1.5 sccm ### -ZnTe Flag on 10 nm Au/Si # Summary - ZnTe on mica - Tiny nanowires upstream of the source. - Downstream, the growth turned directly to a thick film - Film showing epitaxial growth - ZnTe on Si with Au catalysts - Ultra-long micro-wires up to 20mm at high temperature zone: ~680 - 630 - Ultra-long nanowires up to 10mm at medium temperature zone : ~630 575 - Dandelion-like nanowires at low temperature zone : ~575 480 - Flag structures waving under SEM ### **Future Work** - Modify temperature profile - Study crystal structure and epitaxial growth relation - Investigate the evolution of nanowires - Improve crystal quality and uniformity - Core-shell II-VI nanostructure # Acknowledgements - Financial support from NSF Ceramics program DMR-1006547 and UNC Charlotte Faculty Research Grant FRG 1-11769 - Group members: Alex Owen, Tao Sheng - Xu group: Youfei Jiang - Advisor: Haitao Zhang - Department of M.E.: Tracy Beauregard