van der Waals Epitaxy of Onedimensional II-VI Nanostructures

Alex Owen

on behalf of Ezekiel Ogle

Advisor: Haitao Zhang

Outline

- Introduction
- Experimental Setup and Procedures
- Results and Discussions
- Summary and Future Work
- Acknowledgements

Introduction

Objectives

- Achieve high quality and uniform growth
- Employ CVD for heterogeneous growth
- Compare:
 - van der Waals epitaxy
 - Conventional epitaxy

Introduction

— What are II-VI Materials?

II-VI Semiconductors:

1 1	Periodic Table																0
H 3 Li	IIA 4 Be	of the Elements												7 N	8 0	VIIA 9 F	He 10 Ne
11 Na	11 Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 * La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 Ns	108 Hs	109 Mt	110 110	111 111	112 112	113 113					

Applications of II-VI Nanostructures

II-VI Nanostructures applications

- Photovoltaic conversion
- Light emission
- Photo detection
- High-energy radiation detection

Epitaxial Growth: van der Waals vs. Conventional

Conventional Epitaxy

van der Waals Epitaxy

Results and Discussion

- ZnTe on Mica

Pressure

~50 Torr

Temperature

800 °C

Time

30 min

 H_2

1.5 sccm

-ZnTe Flag on 10 nm Au/Si

Summary

- ZnTe on mica
 - Tiny nanowires upstream of the source.
 - Downstream, the growth turned directly to a thick film
 - Film showing epitaxial growth
- ZnTe on Si with Au catalysts
 - Ultra-long micro-wires up to 20mm at high temperature zone: ~680 - 630
 - Ultra-long nanowires up to 10mm at medium temperature zone : ~630 575
 - Dandelion-like nanowires at low temperature zone :
 ~575 480
 - Flag structures waving under SEM

Future Work

- Modify temperature profile
- Study crystal structure and epitaxial growth relation
- Investigate the evolution of nanowires
- Improve crystal quality and uniformity
- Core-shell II-VI nanostructure

Acknowledgements

- Financial support from NSF Ceramics program DMR-1006547 and UNC Charlotte Faculty Research Grant FRG 1-11769
- Group members: Alex Owen, Tao Sheng
- Xu group: Youfei Jiang
- Advisor: Haitao Zhang
- Department of M.E.: Tracy Beauregard

