
Numerical Methods Equation Sheet

1. Roots of Equations

• Bisection Method
xmid =

xlower + xupper

2

• Newton-Raphson Method

xi+1 = xi −
f(xi)

f ′(xi)

• Secant Method

xi+1 = xi − f(xi)

(
xi − xi−1

f(xi)− f(xi−1)

)

2. Linear Algebraic Equations

• Gauss Elimination Method Forward elimination to create an upper triangular matrix, then back sub-
stitution to solve for the variables.

• LU Decomposition

A = LU, (1)

Ly = b (2)

Ux = y (3)

where L is a lower triangular matrix and U is an upper triangular matrix.

• Cholesky Factorization
A = LLT

where L is a lower triangular matrix with positive diagonal elements and LT is the transpose of L.

• Gauss-Seidel Iteration
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• Jacobi Iteration
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• Successive Over-Relaxation (SOR)
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where ω is the relaxation factor, and 0 < ω < 2.

3. Curve Fitting and Interpolation

• Lagrange Interpolating Polynomial

P (x) =
n∑

i=0

yi
∏

0≤j≤n
j 6=i

x− xj
xi − xj

• Newtons Divided Difference Interpolation

P (x) = f [x0] + f [x0, x1](x− x0) + . . .+ f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1)

• Least Squares Regression (Linear)
y = a0 + a1x
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4. Numerical Differentiation and Integration

• Finite Difference Approximation

– Forward Difference (first and second derivatives)

f ′(x) ≈ f(x+ h)− f(x)

h

f ′′(x) ≈ f(x+ 2h)− 2f(x+ h) + f(x)

h2

– Backward Difference

f ′(x) ≈ f(x)− f(x− h)

h

f ′′(x) ≈ f(x)− 2f(x− h) + f(x− 2h)

h2

– Central Difference

f ′(x) ≈ f(x+ h)− f(x− h)

2h

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
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• Numerical Integration

– Trapezoidal Rule ∫ b

a
f(x) dx ≈ b− a

2
[f(a) + f(b)]

– Simpson’s 1/3 Rule (single panel, n = 2):∫ b

a
f(x) dx ≈ b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
– Composite Simpson’s 1/3 Rule (even number of subintervals n = 2, 4, 6, . . . ): Let n be even,

h =
b− a
n

, and xi = a+ ih.

∫ b
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– Simpson’s 3/8 Rule (single panel, n = 3):∫ b

a
f(x) dx ≈ b− a
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– Composite Simpson’s 3/8 Rule (number of subintervals n = 3, 6, 9, . . . ): Let n be a multiple of

3, h =
b− a
n

, and xi = a+ ih.

∫ b

a
f(x) dx ≈ 3h
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
– Gauss-Legendre Quadrature Rules: The integral approximation is given by:∫ 1

−1
f(x) dx ≈

n∑
i=1

wif(xi)

where xi are the Gauss-Legendre nodes and wi are the corresponding weights. Below are the
values of nodes and weights for different orders of Gauss-Legendre Quadrature Rules:

1. 1st Order (n=1)
x1 = 0, w1 = 2

2. 2nd Order (n=2)

x1,2 = ± 1√
3
, w1 = w2 = 1

3. 3rd Order (n=3)

x1 = 0, x2,3 = ±
√

3

5
, w1 =

8

9
, w2 = w3 =

5

9

4. 4th Order (n=4)

x1,2 = ±

√
3

7
− 2

7

√
6

5
, x3,4 = ±

√
3

7
+

2

7

√
6

5

w1,4 =
18 +

√
30

36
, w2,3 =

18−
√

30

36
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5. Solving Ordinary Differential Equations (ODEs)

• Eulers Method
yi+1 = yi + hf(xi, yi)

• Runge-Kutta Method (Fourth Order)

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4)

where:

k1 = f(xi, yi),

k2 = f

(
xi +

h

2
, yi +

h

2
k1

)
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h

2
, yi +

h

2
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)
,

k4 = f(xi + h, yi + hk3)

6. Solving Partial Differential Equations (PDEs)

• Finite Difference Method for Heat Equation

un+1
i = uni + α

∆t

(∆x)2
(uni+1 − 2uni + uni−1)

where α is the thermal diffusivity.

7. Optimization

• Newtons Method for Optimization

xi+1 = xi −
f ′(xi)

f ′′(xi)

8. Norms

• Vector Norms

– 1-Norm (Taxicab or Manhattan Norm)

‖x‖1 =
n∑

i=1

|xi|

where x = [x1, x2, . . . , xn]T is a vector in Rn.

– 2-Norm (Euclidean Norm)

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2
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– Infinity Norm (Maximum Norm)
‖x‖∞ = max

1≤i≤n
|xi|

• Matrix Norms

– 1-Norm (Maximum Absolute Column Sum)

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |

where A = [aij ] is an m× n matrix.

– Frobenius Norm

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

– Infinity Norm (Maximum Absolute Row Sum)

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |

– Matrix 2-Norm (Spectral Norm) The matrix 2-norm (also known as the spectral norm) is the
largest singular value of A:

‖A‖2 = σmax

where σmax is the largest singular value of A.

5


