Numerical Methods Equation Sheet

1. Roots of Equations

e Bisection Method
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e Newton-Raphson Method
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Secant Method
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2. Linear Algebraic Equations

Gauss Elimination Method Forward elimination to create an upper triangular matrix, then back sub-
stitution to solve for the variables.

LU Decomposition
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where L is a lower triangular matrix and U is an upper triangular matrix.

Cholesky Factorization
A=LL"

where L is a lower triangular matrix with positive diagonal elements and L is the transpose of L.

Gauss-Seidel Iteration
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Jacobi Iteration
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e Successive Over-Relaxation (SOR)
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where w is the relaxation factor, and 0 < w < 2.

3. Curve Fitting and Interpolation

e Lagrange Interpolating Polynomial
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e Newtons Divided Difference Interpolation
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e [ cast Squares Regression (Linear)
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e Finite Difference Approximation

4. Numerical Differentiation and Integration

— Forward Difference (first and second derivatives)
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e Numerical Integration
— Trapezoidal Rule
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— Simpson’s 1/3 Rule (single panel, n = 2):
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— Composite Simpson’s 1/3 Rule (even number of subintervals n = 2,4,6,...): Let n be even,
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— Simpson’s 3/8 Rule (single panel, n = 3):
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— Composite Simpson’s 3/8 Rule (number of subintervals n = 3,6,9,...): Let n be a multiple of
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— Gauss-Legendre Quadrature Rules: The integral approximation is given by:
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where z; are the Gauss-Legendre nodes and w; are the corresponding weights. Below are the
values of nodes and weights for different orders of Gauss-Legendre Quadrature Rules:
1. 1st Order (n=1)
Tr = O, w1 = 2
2. 2nd Order (n=2)
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5. Solving Ordinary Differential Equations (ODEs)

e Eulers Method
Yir1 = Yi + hf (s, ys)

e Runge-Kutta Method (Fourth Order)
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6. Solving Partial Differential Equations (PDEs)

o Finite Difference Method for Heat Equation
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where « is the thermal diffusivity.
7. Optimization
e Newtons Method for Optimization
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8. Norms
e Vector Norms

— 1-Norm (Taxicab or Manhattan Norm)
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where x = [x1, 23, ..., 2, is a vector in R™.

n 1/2
Il = (zw)
=1

— 2-Norm (Euclidean Norm)



— Infinity Norm (Maximum Norm)
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e Matrix Norms

1-Norm (Maximum Absolute Column Sum)
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where A = [a;;] is an m x n matrix.

Frobenius Norm
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Infinity Norm (Maximum Absolute Row Sum)
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Matrix 2-Norm (Spectral Norm) The matrix 2-norm (also known as the spectral norm) is the
largest singular value of A:
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where o,y is the largest singular value of A.



